
Unstarts occurred “when you least expected them-all relaxed and taking in the magnificent view from 75,000 feet,” wrote Graham in SR-71 Revealed. When the air pressure inside the inlet became too great, the normal shock wave was suddenly belched out of the inlet in an unstart, accompanied by an instantaneous loss of air flow to the engine, an enormous increase in drag, and a significant yaw to the side with the affected inlet. The forward and aft bypass doors work in opposition to each other: Opening the aft doors causes the forward doors to close, and when the pilot closes the aft doors, the forward doors open in turn.ĭuring some Blackbird flights, however, the harmonious working of the spike and the forward and aft bypass doors broke down, and all too quickly the inlet was filled with more air than it could handle. The inlet also has a set of aft bypass doors, controlled by the pilot. The inlet has an internal pressure sensor, and when it detects that the pressure has grown too great, it triggers the forward bypass doors to open, expelling excess air. It is a constant balancing act to keep the normal shock wave in the right position. Once there, the normal shock wave slows the air passing through it to subsonic speeds, preparing it to enter the compressor. As the slowed, but still supersonic, air continues to move farther into the inlet, the normal shock wave springs up between the inlet throat and the engine compressor-exactly where it is supposed to be. The farther back over the cone the air moves, the more speed it bleeds off. The cone shape of the spike also incrementally reduces the speed of the incoming supersonic air without producing a drastic loss of pressure. At Mach 3.2, with the spike fully aft, the air-stream-capture area has increased by 112 percent and the throat area has shrunk by 54 percent. Inlet geometry is altered when the spike retracts toward the engine, approximately 1.6 inches per 0.1 Mach. The SR-71 Blackbird, a now-retired twin-engine reconnaissance aircraft, has an inlet design based on a cone-shaped body, or spike, that generates an oblique-angled, cone-shaped shock wave at the inlet’s entrance and a normal shock wave-one rising at a right angle from the direction of air flow-just aft of the internal inlet throat.Īs the SR-71 increases its speed, the inlet varies its exterior and interior geometry to keep the cone-shaped shock wave and the normal shock wave optimally positioned. Turbojet engines cannot digest the shock waves generated by their inlets, so a crucial role of the inlet is to keep the inevitable shock waves positioned so that they do no harm. But as an airplane approaches Mach 1, it compresses the air ahead of it into shock waves-bands of air radiating from the airplane that are much hotter and denser than the ambient air. An aircraft flying subsonically pushes through the air ahead of it, with each molecule of air having plenty of time to pass over its wings and fuselage. The inlet’s job is complicated by the fact that air moving supersonically behaves differently from subsonic air. The job of an engine inlet is to slow incoming air to subsonic speeds before it passes through the engine. But no turbojet engine compressor-the rotating disks and blades at the face of the engine that compress the air before it is mixed with fuel-is capable of handling supersonic air flow. When a jet airplane is flying faster than Mach 1-beyond the speed of sound-the air entering the engines is moving supersonically as well. It shows what can happen when a supersonic inlet stops delivering the uniform stream of air upon which efficient jet engine operation depends. This is an account of a supersonic engine inlet failure, or “unstart,” recalled by retired reconnaissance systems officer Roger Jacks in SR-71 Revealed, a book by retired Lockheed SR-71 pilot Richard H.



Shortly thereafter-KER BLAM!-the aircraft slammed my head against the side of the cockpit and then momentarily became unstable as it yawed, pitched, and vibrated.”

“We were in a turn and climbing when one of the inlets showed signs of instability.
